Ir al contenido principal

RELACIÓN Y FUNCIÓN



Relación y Función 

Producto Cartesiano
El producto cartesiano de dos

conjuntos A y B, denotado A × B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un elemento de A y el segundo componente es un elemento de B.

A × B = { (x,y) / x Î A ^ y Î B }

Ejemplo:

Si A = { a , b , c } y B = { 1 , 2 }

AxB = { (a,1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) }


Note que

A tiene 3 elementos

B tiene 2 elementos

A x B tiene 6 elementos.

Producto Cartesiano

Ejemplo:

A = { corazón, trébol, coco, espada }

B = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }

A x B = { (corazón, 1), (corazón,2),…,(corazón,12), (trébol,1), (trébol,2), …,(trébol,12), …,
(espada,12) }

Note que


A tiene 4 elementos

B
tiene 12 elementos

A x B tiene 48 elementos (todas las cartas del mazo)

Dos conjuntos relacionados
•En una relación binaria intervienen dos conjuntos, el primero se llama «conjunto de partida» y el segundo «conjunto de llegada».
Se los puede representar de las 3 formas siguientes:

Por diagrama de VENN
Resultado de imagen para relacion y funcion

Tabla de doble entrada




Producto cartesiano 











Comentarios

Entradas populares de este blog

INTERVALOS Y DESIGUALDAD

Intervalos y  Desigualdades INTERVALOS Son regiones comprendidas entre dos números reales. En general, si los extremos pertenecen al intervalo, se dice que cerrado, si por el contrario no pertenecen al intervalo, se dice que es abierto. Si uno de extremos pertenece al conjunto y el otro no, se dice que semiabierto o semicerrado. DESIGUALDAD :Es una expresión matemática que involucra los símbolos<, >, ≤, ≥.La solución de una desigualdad es el conjunto de valores que hace de la misma una expresión verdadera. La solución de una desigualdad se puede expresar en forma de intervalo, conjunto y gráfica CLASES DE INTERVALOS Intervalo abierto , (a, b), es el conjunto de todos los números reales mayores que ay menores que b. (a, b) = {x/a Es decir no incluye los extremos Intervalo cerrado, [a, b], es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b. [a, b] = {x / a ≤ x ≤ b} Incluye los extremo...

CONJUNTOS

CONJUNTOS DEFINICIÓN :  Colección, reunión o agrupación de objetos que poseen una característica o propiedad común bien definida. Los objetos que constituyen un conjunto se les llama miembros o elementos del conjunto NOTACIÓN Todo conjunto se escribe entre llaves { } Se denota mediante letras mayúscula.  Sus elementos se separan mediante coma. Ejemplo: El conjunto letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así: C = { a, b, c, ... x, y, z} Ejemplo: La figura adjunta es un Conjunto de Personas A = { 1, 3, 5, 7} B = {x/x2 -3x –2= 0} C = {Inglaterra, Francia, Dinamarca} RELACIÓN DE PERTENENCIA Sirve para indicar si un elemento pertenece o no a un conjunto. El símbolo de pertenencia es Є. Su negación es C = { a, b, c, ... x, y, z} b Є C (se lee: b pertenece a C) 4 C (se lee: 4 no pertenece a C) DETERMINACIÓN DE UN CONJUNTO Las formas de determinar un conjunto son: Por Extensión y Por Comprensión Diag...

LÓGICA MATEMÁTICA

lógica matemática Es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la lógica proporciona reglas y técnicas para determinar si es o no valido un argumento dado. El razonamiento lógico se emplea en matemáticas para demostrar teoremas; en ciencias de la computación para verificar si son o no correctos los programas; en las ciencias física y naturales, para sacar conclusiones de experimentos; y en las ciencias sociales y en la vida cotidiana, para resolver una multitud de problemas. Ciertamente se usa en forma constante el razonamiento lógico para realizar cualquier actividad. Una proposición o enunciado es una oración que puede ser falsa o verdadera pero no ambas a la vez. Toda proposición consta de tres partes: un sujeto, un verbo y un complemento referido al verbo. La proposición es un elemento fundamental de la Lógica Matemática. A continuación se tienen algunos ejemplos de proposiciones válidas y no válidas, y se explica el porqué algunos enunciados n...