Ir al contenido principal

NÚMEROS REALES



Número reales


En matemáticas, el conjunto de los números reales (denotado por ℝ) incluye tanto a los números irracionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes


Se representan con la letra .

El conjunto de los Números Reales ( ) está integrado por:

• El conjunto de los Números Racionales ( ) que corresponden a la unión de todos los números cuya expresión decimal es finita, infinita periódica o infinita semiperiódica.

• El conjunto de los números enteros , positivos y negativos, más el cero

• El conjunto de los Números Irracionales (I) que está formado por la unión de todos los números que admiten una expresión infinita no periódica.


Resultado de imagen para NUMEROS REALES

Tipos de números reales



Números reales


son el conjunto de números sobre los que estudian las matemáticas, ya que son todos los números que pueden ser representados en una recta numérica. Como conjunto, los números reales contiene a los siguientes subconjuntos:
Los números enteros (Z)
que a su vez está compuesto por:

  • Los números naturales (N): Son todos los números enteros positivos. 
  • Los números negativos. 
  • El cero. 
Los números racionales (Q)

que son todos los que se representan por un cociente o fracción, o por números decimales exactos o periódicos. Se dividen en:

  • Las fracciones, que expresan el cociente entre dos cantidades. 
  • Los decimales, que expresan el resultado de un cociente fraccionario. 

Los números irracionales (I)

son los que expresan resultados numéricos cuyo resultado decimal no es periódico y se extiende al infinito.

Los números Trascendentes (T)
 son un subconjunto de los números irracionales y algunos racionales, que expresan relaciones matemáticas muy importantes, como la relación entre la circunferencia y el radio, el número pi (π).


Generalmente el conjunto de los números reales es representado por la letra “R”, y se les aplican las operaciones y las diferentes propiedades de operación estudiadas en aritmética y en álgebra:







Comentarios

Entradas populares de este blog

INTERVALOS Y DESIGUALDAD

Intervalos y  Desigualdades INTERVALOS Son regiones comprendidas entre dos números reales. En general, si los extremos pertenecen al intervalo, se dice que cerrado, si por el contrario no pertenecen al intervalo, se dice que es abierto. Si uno de extremos pertenece al conjunto y el otro no, se dice que semiabierto o semicerrado. DESIGUALDAD :Es una expresión matemática que involucra los símbolos<, >, ≤, ≥.La solución de una desigualdad es el conjunto de valores que hace de la misma una expresión verdadera. La solución de una desigualdad se puede expresar en forma de intervalo, conjunto y gráfica CLASES DE INTERVALOS Intervalo abierto , (a, b), es el conjunto de todos los números reales mayores que ay menores que b. (a, b) = {x/a Es decir no incluye los extremos Intervalo cerrado, [a, b], es el conjunto de todos los números reales mayores o iguales que a y menores o iguales que b. [a, b] = {x / a ≤ x ≤ b} Incluye los extremo...

CONJUNTOS

CONJUNTOS DEFINICIÓN :  Colección, reunión o agrupación de objetos que poseen una característica o propiedad común bien definida. Los objetos que constituyen un conjunto se les llama miembros o elementos del conjunto NOTACIÓN Todo conjunto se escribe entre llaves { } Se denota mediante letras mayúscula.  Sus elementos se separan mediante coma. Ejemplo: El conjunto letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así: C = { a, b, c, ... x, y, z} Ejemplo: La figura adjunta es un Conjunto de Personas A = { 1, 3, 5, 7} B = {x/x2 -3x –2= 0} C = {Inglaterra, Francia, Dinamarca} RELACIÓN DE PERTENENCIA Sirve para indicar si un elemento pertenece o no a un conjunto. El símbolo de pertenencia es Є. Su negación es C = { a, b, c, ... x, y, z} b Є C (se lee: b pertenece a C) 4 C (se lee: 4 no pertenece a C) DETERMINACIÓN DE UN CONJUNTO Las formas de determinar un conjunto son: Por Extensión y Por Comprensión Diag...

RELACIÓN Y FUNCIÓN

Relación y Función  Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A × B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un elemento de A y el segundo componente es un elemento de B. A × B = { (x,y) / x Î A ^ y Î B } Ejemplo: Si A = { a , b , c } y B = { 1 , 2 } AxB = { (a,1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) } Note que A tiene 3 elementos B tiene 2 elementos A x B tiene 6 elementos. Producto Cartesiano Ejemplo: A = { corazón, trébol, coco, espada } B = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } A x B = { (corazón, 1), (corazón,2),…,(corazón,12), (trébol,1), (trébol,2), …,(trébol,12), …, (espada,12) } Note que A tiene 4 elementos B tiene 12 elementos A x B tiene 48 elementos (todas las cartas del mazo) Dos conjuntos relacionados •En una relación binaria intervienen dos conjuntos, el primero se llama «conjunto de partida» y el se...